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The nonlinear dynamical behaviour of a conducting drop in a time-periodic electric 
field is studied. Taylor’s (1964) theory on the equilibrium shape is extended to derive 
a dynamical equation in the form of an ordinary differential equation for a conducting 
drop in an arbitrary time-dependent, uniform electric field based on a spheroidal 
approximation for the drop shape and the weak viscosity effect. The dynamics is then 
investigated via the classical two-timing analysis and the PoincarC map analysis of the 
resulting dynamical equation. The analysis reveals that in the neighbourhood of a 
stable steady solution, an O(d) time-dependent change of drop shape can be obtained 
from an O(c) resonant forcing. It is also shown that the probability of drop breakup 
via chaotic oscillation can be maximized by choosing an optimal frequency for a fixed 
forcing amplitude. As a preliminary analysis, the effect of weak viscosity on the 
oscillation frequency modification in a steady electric field is also studied by using the 
domain perturbation technique. Differently from other methods based on the theory 
of viscous dissipation, the viscous pressure correction is directly obtained from a 
consideration of the perturbed velocity field due to weak viscosity. 

1. Introduction 
One of the interesting free boundary problems is the deformation of fluid interfaces 

under an applied electric or magnetic field. This problem lies at the core of various 
applications and has been studied by many investigators. In the present paper, we are 
concerned with the dynamics of a conducting drop in an electric field. Specifically, we 
investigate the deformation and breakup of a conducting drop by considering the 
dynamic response of the drop shape to time-periodic perturbations of an electric field. 

The equilibrium shape for a drop in a steady electric field was first obtained by 
Taylor (1964). He approximated the equilibrium shapes of a conducting drop as 
spheroids, and applied the normal stress condition at the poles and the equator to 
determine the shape. By means of two-point approximation, Taylor showed that there 
exists a limit point (the so-called Taylor limit) in dimensionless electric field strength 
beyond which no steady-state solution can be obtained. The existence of the limit point 
has been verified by the numerical solutions of various investigators (Miksis 1981; 
Basaran & Scriven 1989). Since the work of Taylor, it has been found that there are 
two branches of stable and unstable solutions when the dimensionless electric field 
strength is below the Taylor limit. 

Another problem of fundamental importance in drop dynamics is the oscillation 
frequency of a small-amplitude perturbation about the stable steady-state shape in a 
steady electric field. Motivated by a meteorological interest, Brazier-Smith et al. (197 1) 
extended Taylor’s spheroidal approximation method to calculate the oscillation 
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frequency of a conducting drop in an electric field. They showed that the oscillation 
frequency decreases as the electric field strength increases and becomes zero at the 
Taylor limit. Although the result of Brazier-Smith et al. predicts the frequency 
modification quite accurately for a wide range of dimensionless elecric field strength, 
the spheroidal approximation restricts the study to a special form of oscillation mode. 
On the other hand, there have been several investigations on the frequency modification 
for the more general form of axisymmetric oscillations in the limit of small electrical 
field strength. Among them, two works by Sample, Raghupathy & Hendricks (1970) 
and Morrison, Leavitt & Wortman (1981) are worthy of note. In both analyses, the 
drop shape was expressed in terms of the Legendre polynomials and the Lagrange 
equation was solved using approximate expressions for the kinetic and potential 
energies. Unfortunately, the scaling of small parameters was not clearly identified and 
the terms of the same order were not systematically retained. As a consequence, their 
results for the n = 2 mode show a discrepancy with the result of Brazier-Smith et al. 
even when the electric field strength is small. Recently, Feng (1990) analysed the same 
problem by the domain perturbation method with multiple parameters to derive the 
oscillation frequency of an inviscid drop as a function of electric field strength for the 
asymptotic case of small strength, and obtained a result that is in good agreement with 
the simplified models based on the assumption of spheroidal deformations. Feng’s 
result has further been extended to include net charge effects (Feng & Beard 1990) and 
three-dimensional effects (Feng & Beard 1991 b). 

The dynamics of a drop in a time-dependent electric field has been investigated by 
very few researchers. Sozou (1972) extended Taylor’s (1966) work on the flow field 
induced by an electric field in and about a liquid drop in an incompressible conducting 
fluid. He included time-dependent electric fields and gave a number of results in the 
form of equations with a few cases of numerical results. Later, Morrison et al. (1981) 
calculated the Lagrangian to derive a linearized equation of motion. They considered 
three types of fields: a static electric field, an alternating electric field, an an amplitude- 
modulated high-frequency field. Recently, Feng & Beard (1991 a) studied the oscillation 
of a conducting drop in an alternating electric field by using the domain perturbation 
method. In their analysis, a primary resonance occurs in the first-order forced 
oscillation problem. Under strong excitation, superharmonic, subharmonic, and 
coupled resonances are revealed in their second-order solution. Although rigorous, 
their analysis is limited to the near-sphere oscillation, i.e. the base equilibrium state for 
their analysis is a spherical drop in the absence of an electric field. Consequently, their 
analysis could not reveal more interesting nonlinear dynamical behaviour such as two- 
timing oscillatory solutions or indefinite stretching due to the primary resonances. 

In this paper, we therefore perform a global analysis of the nonlinear dynamical 
behaviour of a conducting drop in a time-periodic electric field, the time-averaged 
electric field strength of which is lower than the Taylor limit. To achieve the goal of the 
present work, Taylor’s (1964) theory on the equilibrium shape is extended to derive a 
dynamical equation for a conducting drop in an arbitrary time-dependent, uniform 
electric field based on the spheroidal approximation. Then the dynamics of a 
conducting drop are investigated via the classical two-timing analysis and the Poincart 
map analysis of the resulting dynamical equation. 

As we shall see later, one of the most important pieces of information for the study 
of drop dynamics in a time-periodic field is the intrinsic frequency of oscillation in a 
steady field. Thus, before going on to the main part of the present work we revisit 
briefly the problem of oscillation frequency change in a steady electric field in order to 
extend Feng’s (1990) asymptotic formula by including the weak viscous effect. 
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Differently from other methods based on the theory of viscous dissipation, the viscous 
pressure correction and the viscous normal stress are obtained directly from 
consideration of the perturbed velocity field due to weak viscosity. Some results in this 
preliminary section will be used in a derivation of the dynamical equation as well as in 
a comparison of results for the effect of weak viscosity on the frequency change derived 
by two different approximations. 

Of particular relevance to the present study is the phase-plane portrait of changes of 
drop shape in a steady electric field. As we shall see later, Taylor’s (1964) result 
indicates that there exists a homoclinic orbit (or separatrix) in a phase-plane portrait 
when the viscosity effect is neglected. The homoclinic orbit separates stable oscillatory 
solutions from unstable solutions that correspond to exponential stretching in the 
electric field direction. This suggests that the drop shape will be susceptible to a 
transition from regular to chaotic behaviour upon introduction of a time-periodic 
modulation of the electric field strength. In fact, the present problem is quite similar 
to the problem of bubble dynamics in time-periodic straining flows, which was 
analysed by Kang & Leal (1 990). Kang & Leal showed that a bubble in a time-periodic 
straining flow may exhibit regular or chaotic behaviour depending on the initial 
conditions and parameters. Thus, in spirit, the work reported here is closely related to 
the analysis of Kang & Leal (1990). 

2. Problem formulation 
We consider an incompressible conducting drop of volume $a: in vacuum, which is 

undergoing deformations of shape in the presence of a time-periodic, electric field as 
shown in figure 1.  The electric field away from the drop is uniform and of strength 
E,(t). The density and viscosity of the fluid are p and p, and the surface of the drop 
is assumed to be characterized completely by a uniform surface tension y. Furthermore, 
we neglect all effects of gravity including the hydrostatic pressure variation in the fluid. 

In our analysis, we consider the axisymmetric dynamics of a weakly viscous drop. 
The dynamics of a weakly viscous drop has usually been studied via the theory of 
viscous dissipation (e.g. Lamb 1932). However, as shown in previous works (Prosperetti 
1977; Kang & Leal 1988 ; Feng & Beard 1991 a), the weak viscous effects can also be 
studied by using the equation of inviscid motion if the viscous pressure correction and 
the viscous normal stress are included in the boundary condition for the normal stress 
balance. Thus, we adopt the latter approach and use the electric field and velocity 
potentials ( E  = V$ and u = Vq5) in the formulation. We then non-dimensionalize all 
governing equations and boundary conditions with the following characteristic scales : 

The dimensionless governing equations are for the electric field outside the drop 

VZII. = 0, (1) 
and for the fluid motion inside the drop 

V2$ = 0. (2) 
For the boundary conditions, in addition to the far-field condition 

we have at the drop surface, 
V$+ez as r - tco ,  (3) 
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FIGURE 1. A conducting drop in a time-dependent electric field. 

(i) kinematic condition : 

- V@-i i ,  1 aF 
I V F ~  at 

(ii) normal stress condition: 
(4) 

(iii) infinite-permittivity condition : 

(6)  
where F = r-R(8, t )  is the shape function for the drop surface and ii is the outward 
unit normal at the drop surface. In the normal stress condition, En denotes the normal 
component of the electric field, i.e. En = n - E  = a$/aA, and W(t) is the time-dependent 
electrical Weber number defined as 

$ = constant along the surface, 

6 E (t)2a, 
Y 

W(t) = O co 9 

where c0 is the electric permittivity in vacuum. The term -2S(a24/afi2) represents the 
viscous normal stress and pv  is the pressure correction due to the weak viscous effect. 
The dimensionless number S is defined as 

S = -  P -  t c  - t C J W  

tc, vts (pa, y)t - a ,X~u /p )  

and its physical meaning is the ratio of a surface-tension-based timescale and a 
timescale for viscous diffusion. For a perfectly conducting drop, the shear stress due to 
fluid motion at the drop surface should vanish because both the total shear stress and 
the tangential electric stress are zero at the drop surface (Melcher & Taylor 1969). This 
vanishing shear stress condition is used to evaluate the viscous correction pv in (5). In 
addition to the differential equations and boundary conditions (1)-(6), the solution for 
the drop shape must satisfy two overall constraints of volume conservation and centre 
condition. In fact, the time-dependent constant G(t)  in ( 5 )  is determined by the 
constraint of volume conservation. 

In our formulation, we assumed electrostatic equilibrium at each time. In order for 
this assumption to be valid, the charge relaxation time T ~ ,  defined as 7, = e,,/cc where 
cc is the conductivity of fluid, should be much smaller than the characteristic time for 
fluid motion t". i.e. 
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As an example, for water at room temperature, 7, M lo-' s and t ,  M 1.2 x lo-' s if 
a, = 1 pm (see Nafeh & Brussel 1985). Thus, an electrostatic equilibrium may be 
safely assumed unless the drop size is extremely small. 

3. Results from perturbation analysis for a drop in a steady electric field 
Before going on to the main part of the present paper, we touch briefly on the results 

from the perturbation analysis on the oscillation about the steady shape in a steady 
electric field (i.e. W(t) = W = constant) in the limit 0 < W < 1 and 0 < S < 1. In later 
sections, the nonlinear dynamical behaviour of a drop in a time-periodic electric field 
will be studied based on the spheroidal approximation rather than the domain 
perturbation analysis. However, as we shall see later, one of the most important pieces 
of information for the study of drop dynamics in a time-periodic field is the intrinsic 
frequency of oscillation in a steady field. Thus, it would be better if we have the results 
for the frequency modification obtained by two different approximations. In fact, some 
results in this section will be frequently referred to for various purposes such as 
derivation of the dynamical equation and comparison of the results from two different 
approximations. Thus, we want to discuss several results from the perturbation 
analysis to render this work more self-contained. 

3.1. Oscillation of a weakly viscous drop 
For axisymmetric oscillations of an inviscid drop, a rigorous asymptotic formula for 
the frequency modification due to an electric field was first obtained by Feng (1990). 
He used the domain perturbation method with multiple timescales to obtain the result 
(equation (4.28) in Feng 1990), which can be expressed compactly after some algebra 
as 

W+0(W2) ,  
9(2n5 + 23n4 + 21n3 - 1 7 2  - 7n - 2) %= 1 -  

"?a0 8(2n - 1) (2n + 1) (2n + 3) (n - 1) (TI + 2) (7) 

where wn0 is the frequency of the nth mode for the case of no electric field and it is 

w,, = ((n - 1) n(n + 2));. 

In the present section, the weak viscosity effect is considered to extend Feng's result. 
Morrison et al. (1981) considered the same problem to extend the Rayleigh theory of 
oscillation of liquid drops. They used Rayleigh's dissipation function to derive the 
effect of viscosity. However, unfortunately their asymptotic formula for the frequency 
modification due to the electric field is not correct because of the reason mentioned in 
the introduction. Differently from the previous works based on the dissipation theory, 
in the present work the viscosity effect is considered via the viscous pressure correction 
and the viscous normal stress in the normal stress condition. Particular emphasis will 
be given to how the vorticity is generated at the curved drop surface due to the 
vanishing shear stress condition and how the pressure is affected by the generated 
vorticity. Furthermore, the physics underlying the damping effect by the viscous 
pressure correction and the viscous normal stress will be clearly explained. 

In the derivation of the effect of viscosity, we adopt the standard domain 
perturbation method, which is slightly different from but equivalent to the method that 
was used by Feng. Instead of adopting multiple timescales, just a single timescale is 
used in this work. In our method, the solution is expanded as 

9 = 9s++u, 4 = qL, R = 1 + wcs+.5,, (8) 
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where the subscripts s and u denote the steady and unsteady solutions respectively. In 
(81, note that there is no steady fluid motion because no shear stress is exerted by the 
electric field at the drop surface in the perfectly conducting limit (see Melcher & Taylor 
1969). The steady-state solutions that are sufficient for the present purpose are (see 
Feng 1990) 

(9) 

where 7 is defined as r ]  = cos 8 for convenience. Then the governing equations for the 
unsteady parts are 

Here, we use the standard domain perturbation technique to transform the boundary 
conditions at r = 1 + Wc8 + €5, to the equivalent boundary conditions at r = 1.  Then 
the equivalent boundary conditions for the unsteady motion are 

1 
+s = ( -- r 2 )  p,(r]) + wv, c s  = P,(r]) + wv, 

V2+u = O  and V2$, = O .  (10) 

VlCrU+O as r+m, 
and at r = 1, we have 

(i) kinematic condition : 

(ii) normal stress condition: 

+A[  - 2 S ~ + p , ]  a"U = ~[(V-A)-(V~fi)s], 1 (13) 
E ad2 

(iii) infinite-permittivity condition : 

(14) a@ $ , + C U ~ + O ( W )  = 0, ar 

where all terms are evaluated at r = 1 except for those in square brackets in (13). These 
terms, - 2S(i32$,/aA2), pv, and V - f i ,  should be evaluated at R = 1 + WC8 + EL&, while 
(Veil), at Rs = 1 + Wcs. As we see in (14), the infinite-permittivity condition imposes a 
relation between $u and 5,. But II., appears only in the first term of the normal stress 
condition, which is O( W).  Therefore, the infinite-permittivity condition up to O( 1) 
terms is sufficient for the present purpose. 

Now, we assume that the solution can be expanded for the unsteady parts in the 
forms 

Then the curvature term in (13) is given as (see Kang & Leal 1988) 
00 1 

-[(v*fi)-(v*il)s] = .,(n+2)(n-1)Pn(r]) 
It-0 6 
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where b f )  are the coefficients in Q = z,=, bp) Pn(y) for the steady-state shape function 
in (9). 

Now we consider the viscous pressure correction term, p,. As mentioned earlier, the 
viscous pressure correction should be evaluated at r = 1 + W& + sCu. Unfortunately, 
however, the domain perturbation technique may not be used for the term because of 
the singular nature ofp, at the drop surface when S-t 0. In other words, there exists 
a boundary layer near the drop surface, and thus the domain perturbation technique 
does not work for this case. However, the viscous pressure correction at the drop 
surface should be a continuous and smooth function of the drop shape. Thus, we may 
still use the approximation 

(17) 
where p,*(l, 6) denotes the viscous pressure correction if the drop had assumed a 
spherical shape. As will be shown shortly, the viscous pressure correction due to the 
O(E) unsteady fluid motion is O(sS). Thus, the error in approximation (17) is at most 
O ( d W )  or O(s2S). Thus, the terms of O(sSW) or O(s2S) can be neglected compared 
with those of O(sW), O(eS) or larger. 

Now, we decompose the velocity field into the potential flow field and the 
disturbance field due to the viscosity effect as 

m 

P,( 1 + Wg, + &&, 6)  = P X l ,  6)  + ( WY, + 4 4 )  O( P 3  1 9 6)) 

u = up+u,;  

then for the O(s) flow fields, u, is O(e) or smaller. Thus, the Navier-Stokes equation 
for the weak viscous correction (i.e. S < 1) in dimensionless form is given as 

aU 
= - v p ,  + sv2u,. at 

The vorticity equation corresponding to (18) is 

am 
- = - s v  x (V x o), 
at 

where o = V x u,. 

as (see Prosperetti 1977 and Kang & Leal 1988) 
For an axisymmetric problem, the vorticity can be expressed with the toroidal field 

m 
o = V x (Tn(r) Pn(cos 0) e,). 

n=o 

Then, as shown by Prosperetti (1977), 
00 

p,*(l, 6)  = - z (n + 1) ST,( 1) P,(cos 6). 

From (20) and the definition of vorticity, we may show that 
n=o 

For a perfectly conducting drop, the tangential stress must vanish at r = 1, i.e. 

U Q + - r  1 au = 0. _-_ 
ar r r a0 
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By eliminating au,/ar in (22) by using (23), we have 

where the approximation u = up + o( 1) O( 11 up 11) for S + 0 has been used. Differently 
from the no-slip boundary case, the potential flow solution is a true limiting solution 
as S +  0 in the free-surface problems, where the shear stress vanishes. Furthermore the 
O(e) solution for c( 1) is sufficient for the present purpose because p,* is O(eS) as we 
can see from (21). 

In the above, we have seen how the vorticity is generated at the curved drop surface 
due to the vanishing tangential stress condition and how the pressure is affected by the 
vorticity generated at the surface. For the present problem, the potential flow field is 
given as 

'x 

u p  = ev$u, $u = C Pnrnpn(r). 
n=o 

By substituting (25) into (24), we have 

Therefore, from (21) and (26), 
T,( 1) = 2~/3,(n - 1). 

m 

pz(1,B) = - E  ( ~ S ) ~ , ( ~ - I ) ( ~ + I ) P , ( C O S B ) .  
n=o 

On the other hand, the viscous normal stress is given as 

Here, we must note that both p,*(1,8) and -2S(i32q5/afi2) 

(28) 

are O(sS), but 
Ip,*( 1,O)l > I - 2S(i32$/aii2)>I for all n. This fact means that the viscous pressure correction 
is no less important than the viscous normal stress, and we should include the viscous 
pressure correction whenever we consider the viscosity effect. 

One important point that we should note is that the viscous pressure correction and 
the viscous normal stress exert forces on the drop surface in the opposite direction to 
the surface motion and consequently act as damping stresses. This point becomes 
obvious if we see the contributions from each mode. For the nth mode, 

Along this line of discussion, one related work is worthy of note. Feng & Beard (1991 a) 
defined the viscous damping stress Nd as Nd = pv + (- 2s)  i32q5/i3fi2 in our notation and 
obtained Nd in an indirect way. They could get the same result as in this work by 
equating the rate of overall work done by Nd to the total rate of dissipation of 
mechanical energy for each mode. Thus, it is clearly shown that the approach in the 
present work is completely equivalent to those based on the dissipation theory. 
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By using the information in (16), (27), and (28), the normal stress condition can be 
expressed as 

= a,(n + 2) (n - 1) P, - 2 W E  a, Pn c bf'(kZ+k- 1) Pk 
- 2 W E  b p  Pk an(n2 + n - 1) P, + O(SW) + O( W". (29) 

Now, it is straightforward to proceed. First, the expansions for steady and unsteady 
solutions ((9) and (15)) are substituted into the kinetmatic condition (12), the normal 
stress condition (29), and the infinite permittivity condition (14). Then we simplify the 
equations by using the well-known formulae for the products of the Legendre 
polynomials. The detailed procedure is very similar to those in Kang & Leal (1988) and 
Feng (1990). The kinematic condition is then expressed in the form 

(30) k n  = Wff+z(n) Pn+2 + (n  + Wffo(n)) Pn + Wff-z(n) Pn-2, 

and the normal stress condition and the infinite permittivity condition are combined to 
be expressed as 

-bfi(1+ ~ ~ o ( n ) ) -  ~ ~ + 2 ( n ) 8 n + 2 -  wB-,(n>bn-2-2s(n-l)(2n+ ~ I P ,  
= ((n + 2) (n - 1) + WC,(n)) a, + WC+,(n) a n + 2  + WC-,(n) a,-2, (31) 

where Ht(n), B,(n), and C,(n) are rational functions of n, detailed expressions for which 
are not given here. From (30) and (31), P,, P n k 2 ,  b,, and ) n & 2  are eliminated to obtain 

= - WA+,(n) - WA_,(n) + O(SW + O( W'), (32) 

di, + 2S(n - 1) (2n + 1) ci, + (n - 1) n(n + 2) (1 - WAo(n)) a, 

where 

and A*&) are the rational functions of n,  precise expressions for which we do not need 
for the present purpose. 

As a special case of (32), we have for W =  0 

din+2S(n- 1)(2n+ l)cG,+(n- 1)n(n+2)an = 0, (33) 
which is the famous result obtained earlier by Lamb (1932) via the theory of viscous 
dissipation. Let us now consider the frequency modification and the damping 
coefficient in the case of non-zero W. To do that we define 

n (34) 
a = e-s(fl-l) (Z,+l) t .-, -4 - a, = e ma,, 

where d ,  is expected to exhibit purely oscillatory behaviour at least up to O( W).  Then 
(32) becomes 

6, + (n - 1) n(n + 2) (1 - WAo(n) - S2Do(n)) d, 

= - WA+,(n) O( 1) 4+, - WA-,(n) O(1) + O(SW + O( W"), (35) 

where (n - 1) (2n + 1)2 
= n(n + 2) 

and O( 1) means an O( 1) term as both Wand S-+ 0. Now we assume that for each mode 
f l  = d no eiut. (36) 
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FIGURE 2. Frequency modification as a function of Wand S (solid lines: predictions by equation (37) 
for the n = 2 mode, symbols: predictions from the analysis based on the spheroidal approximation). 

Then (36) can be expressed compactly as 

AX = 0, 

where A is a tridiagonal matrix with 

a,, = w2 - (n - 1) n(n + 2) (1 - WA,(n) - S2Do(n)), 
an, S+l = WA+,(n) W), 
an,, n-1= WA-,(n) 0(1), 

and x = (Ez0,  &,,, . . .) T. As well known, the oscillation frequency is determined from the 
condition 

det (A) = 0. 

Here, we should note that any off-diagonal element must be multiplied by another off- 
diagonal element in a computation of the determinant of A. In other words, off- 
diagonal elements can contribute to the determinant by at most O( Wz). Therefore, 
there is no mode-mode interaction up to O(W), and the nth mode oscillation 
frequency, w,, can be predicted from an,n = 0. The final result is 

$ = 1 -A&) W-D0(n)S2 
("no 

s2, (37) 
9(2n5 + 23n4 + 21n3 - 17n2 - 7n -2) 

E 1- W- 4(2n - 1) (2n + 1) (2n + 3) (n-  1) (n + 2) 
(n - 1) (2n + 1)2 

n(n + 2) 

where OJ;, is the square of the frequency of the nth mode for the case of no electric field 
and no viscosity defined in (7). 

When S =  0, (37) reduces to Feng's asymptotic formula for the frequency 
modification (equation (7)). In figure 2, the oscillation frequencies for the n = 2 mode 
predicted from (37) (solid lines) are compared with the results obtained via the 
spheroidal approximation (closed and open circles). Closed circles ( S  = 0 case) 
correspond to the result obtained earlier by Brazier-Smith et al. In later part of the 
present work (55) ,  the theory of Brazier-Smith et al. is extended to include the weak 
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W 
FIGURE 3. Damping factor as a function of Wand S (solid lines: predictions by equation (34) for 
the n = 2 mode; symbols : predictions from the analysis based on the spheroidal approximation). 

viscous effect. Open circles are for the frequency change predicted by the extended 
theory in $5. As we can see, the agreement is very good for small W and S values. The 
damping coefficient predicted by the two different approximations are compared in 
figure 3. The solid lines correspond to the result for the n = 2 mode from (34) and the 
symbols correspond to the prediction by the extended theory based on the spheroidal 
approximation. The agreement between the results is excellent when both S and Ware 
small. However, for a given S value, the two results deviate from each other as W 
increases. The discrepancy may be explained by the following two facts. First, the 
deformed shape by the &mode is spheroidal only when the deformation is small. 
Second, the terms of O(SW) are neglected in the perturbation analysis. 

3.2. Decomposition of frequency change into two parts 
Formula (37) gives the frequency modification due to a steady electric field. It is well 
known that if the equilibrium shape of the drop is deformed away from a sphere by a 
steady force, the frequency changes too no matter what the causes are. Hence it is 
desirable to separate the frequency change due to the electric field (- Ao(n) W )  into two 
parts: (i) one caused by the special effect of the electric field (-Aol(n) W )  and (ii) the 
other caused by a change in equilibrium shape (- Ao2(n) W).  It is easy to show that the 
two separate effects are linearly additive up to O( W )  as 

$ I = 1 -A,@) W = 1 -A,,(n) W - A , , ( ~ )  w. 
"no S-o 

The frequency change due to the special effect of the electric field (- A,,(n) W )  can be 
easily obtained by considering only the oscillation about spherical shape ((Le. by 
setting = 0 and S = 0 in the boundary conditions (12)-(14)). In this case, the 
appropriate boundary conditions reduce to 

(i) kinematic condtiion : 
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FIGURE 4. Frequency change coefficients as functions of n. 

(ii) normal stress condition: 

(iii) infinite-permittivity condition : 

The analysis is simple and only the final result is given here: 

Hence the effect due to the non-spherical equilibrium shape 
A,,(n) = A,(n) --Ao,(n) as 

9(n + 1) (n3 + 2n2 + 3n - 2) 
= 4(2n - 1) (2n + 3) (n - 1) (n  + 2) * 

(42) 

is obtained from 

(43) 

In the above, we have seen that the frequency modification due to the deformed 
equilibrium shape R,(q) = 1 +:WP,(q) is given by w i / w i o  = 1 -A,,(n) W (no matter 
what the causes are) as long as there is no fluid motion at the equilibrium state. Of 
course, in the present problem, W 2 0 and only prolate or spherical equilibrium shapes 
are possible. However, for certain problems due to other forces of deformation, oblate 
equilibrium shapes may also be possible. In that situation, the result (43) suggests that 
the frequency of oscillation may increase if the equilibrium shape is oblate and there 
is no fluid motion at equilibrium. In analogy to the problem of a vibrating string, the 
tendency of frequency change due to deformed equilibrium shape may possibly be 
explained in terms of the circumferential arclength of the section of drop along the 
rotation axis. When the equilibrium shape is given as R,(q) = 1 +ep2(7), the 
circumferential arclength is 2n( 1 +&) + O(2) .  Thus, for a prolate shape it is longer than 
for the sphere case, but it is shorter for an oblate shape, at least up to O(s). 

In figure 4, the two separate contributions (A,,(n) and A,&)) are plotted as 
functions of n along with the total frequency change coefficient (A&)). As we can see, 
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two effects show different asymptotic behaviour as n+ co. The special effect of the 
electric field diminishes (A,,(n) + 0 as n + m), while the effect of deformed equilibrium 
shape persists (Ao&)+; as n+ a). The persisting nature of AO2(n) may also be 
understood by the change in circumferential arclength as mentioned above. 

4. Derivation of a dynamical equation based on the spheroidal 
approximation 

Thus far, as a preliminary, we have studied the results from the perturbation analysis 
for the frequency modification due to a steady electric field in the limit 0 < W < 1 and 
0 < S < 1. Now we are in a position to start the main part of the present work on the 
dynamic response of a conducting drop to a time-periodic electric field. Differently 
from the preceding section, hereafter we perform a global analysis to study the 
nonlinear dynamical behaviour, such as two-timing oscillation and indefinite stretching 
after chaotic oscillation, exhibited by a drop in a time-periodic electric field. However, 
as mentioned earlier, several results in the preceding section will be used in the global 
analysis. 

For the purpose of our global analysis, the most desirable analytical approach is, of 
course, a rigorous solution of the full problem, but that is not practical. On the other 
hand, one can solve the exact problem numerically over a considerable range of the 
parameter space. However, the limitation of a purely numerical approach is the 
necessity of solving a very large number of special cases to obtain a general 
understanding. Thus, we consider a dynamical model to explore the characteristics of 
the drop response to a time-periodic electric field. 

We first derive a reasonably simple dynamical equation in the form of an ordinary 
differential equation for a drop in an arbitrary time-dependent, uniform electric field. 
To derive the dynamical equation, we extend the analyses of Taylor (1964) and Brazier- 
Smith et al. (1971) and assume that the drop takes a spheroidal shape at any time as 
shown in figure 5 .  Let us start the derivation with a geometrical consideration of a 
spheroidal drop. In figure 5,  the x-axis is the symmetric axis, and a(t) and b(t) are 
dimensionless radii on the x-axis and g-axis respectively. The volume conservation 
relation now is 

ab2 = 1, (44) 

(45) 
a d  - from which we have the relation 
2a b' 

Now we want to derive a dynamical equation in terms of a(t)  by considering the normal 
stress condition 

- - -- 

In the following subsections each term in (46) will be expressed in terms of a(t) under 
the spheroidal approximation. 

4.1. Velocity potential inside the drop 
For the coordinate system in figure 5, the Laplace equation has the form 
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FIGURE 5. A spheroidal conducting drop in a time-dependent electric field. 

The solution of the Laplace equation inside the spheroidal drop can be written as 
(Brazier-Smith et al. 1971) 

where B(t) is a function of time only. By applying the kinematic condition at the poles 
(or the equator) (a$/ax)l,=, = 2Ba = u, we have 

$ = -iB(t)fT2+B(t)x2, (48) 

a 
2a 

B(t) = -. 

Here, we must note that the solution (48) with B(t) = 6/2a  satisfies the kinematic 
condition at all points on the drop surface. The shape function for a spheroidal shape 
is given as 

Then 

x2 a2 
a2 b2 

F=--+--l=O. 

1 aF - ((d/a3) x 2 -  (h/2ab2) a2) 
lVFl at ( (x2/a4)  + (a2/b4))t 

(49) 

A=- V F  - @la2,  a / b 2 )  On the other hand 
lVFl - ( (x2/u4)  + (a2/b4)) i  

and V$ = ( ~ B x ,  - B~T)  = ((u/a) x, - (h/2a) a). 

Thus, the kinematic condition (4) is satisfied at all points on the boundary. Therefore 

is a complete solution for the velocity potential inside the drop. Now, we may express 
the values of several terms in (46) at poles and equators in terms of a(t) for later use 
as 
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4.2. Electric potential outside the spheroid 
The potential distribution outside a conducting spheroidal drop is given in Landau & 
Lifshitz (1975), and the normal component of the electric field can be easily obtained 
as the following (for an prolate drop, it is given in Taylor 1964). 

(i) Prolate drop (a > b): 

(ii) Oblate drop (b > a): 

where 

At poles ( x  = +a), P = Q = a,  and the expression for a$/% reduces to 

a$ a3 _ -  - f- for a prolate drop, 
aii  I ,  

_ -  a' - ,a" for an oblate drop. 
aii 

4.3. Curvature terms 
The expression for the curvature may be easily obtained from 

After evaluating (Veri) at the poles and the equator, we have 

4.4. Weak viscous efect 
Since information on the viscous pressure corretion is not available, we borrow the 
result for the near-sphere oscillation that was obtained in Q 3. As shown earlier for the 
velocity potential 

the pressure correction is given by 

q5 = 6 C p, r"P,(cos O), (55)  

pv = - 2s (epp,)  (n  - 1) (n + 1) P,(cos 0). (56) 
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In spheroidal motion, 

By taking x = r cos 8, v = r sin 8, q5 is reduced to 

q5 = -;3u2+ Bx2; B = a/2a. (57) 

q5 = Br2P,(cos 8). ( 5 8 )  
Therefore, eP2 = B = a/2a, /3, = 0 if n =l= 2. Thus the viscous pressure correction may 
be approximated by 

and at the poles ( x  = k u ) :  

and at the equatorial plane (v = b) :  

pv = - 6S(a/2~) PZ(cos 8), 

pv = -3Sa/a, (59 a) 

pv = i S a / a .  (59 b) 
The expression for -2S(a2q5/ari2) can also be obtained from (57), and it has at the poles 

and at the equatorial 

Comparing (59) with 

a24 a 
-2s- = -2s- ,  

a r i 2  a 
plane 

azq5 a -2s- = s-. 
a r i 2  a 

(60) we see that 

at both the poles and the equatorial plane, and this is consistent with the findings for 
the small-deformation case in the preceding section. 

As shown above, the weak viscous effect has been derived based on the near-sphere 
oscillation. However, it will be shown later in this section that the results in (59) and 
(60) are equally valid for an arbitrary degree of deformation as far as the spheroidal 
approximation is used. In $4.6, the weak viscous effect will be reanalysed using the 
dissipation theory. 

4.5. Dynamical equation in terms of a(t) 
We put all the information obtained so far into the normal stress condition, and obtain 
the following results. At the poles (x = +a, v = 0)  

fW( t )  !!! -~(au-u2)-fLi2-5Sh/a+G(t)  = 2a2, MP& 
and at the equatorial plane (x = 0, u = b) 

1 la2 5 a 1 1  

0 +? (au- d2)  -- - + - S -  + G(t) = + az. 
4a 8 a 3  2 a ax 

By eliminating G(t) from (61 a) and (61 b), we finally obtain an equation for the drop 
dynamics in an electric field in terms of a(t) : 

a= 'I .. 4a2 3 a 2  15 a 
a = ~ [ ~ ( t )  E:, pole + - - -- S -  - 2a2 + + , 2a3 + 1 8a3 2 a 
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where E i ,  p o l e  = (i3$/aA>”,,,, has the following expressions depending on whether 
a >  1 o r a <  1: 

E i ,  p o l e  = (a3//l,)2 if a > 1, (63 4 
E&,le = (~’//l,)~ if a < 1. (63 b)  

In (63), I, and I3 are the functions of a(t) defined in (51) and (52). 
The dynamical equation (62) is the most important result of the present paper. In the 

following sections, we will discuss the results predicted from (62) after briefly 
reanalysing the weak viscous effect. 

4.6. Weak viscous egect via the dissipation theory 
The weak viscous effect may also be predicted by the dissipation theory. The energy 
conservation law for the whole drop is given by 

d 
dt 
-(K+P) = -D, 

where K and P are the kinetic and potential energies and D is the viscous dissipation. 
When the velocity of the fluid is given by (50), the kinetic energy may be easily obtained 
as 

K = -  
2 ‘I 

where we have used the relation ab2 = 1 to eliminate b. On the other hand, the 
dimensionless viscous dissipation may be obtained from the surface integral when the 
flow field is given by the potential flow field as (see Batchelor 1967) 

where S is the dimensionless number defined earlier in $2. By using the velocity 
potential function in (50), we may show that 

D = 471 (b/a), S.  (66) 
Now, by substituting (65) and (66) into (64), we may show that 

where other terms are from the potential energy contribution due to the electric field 
and surface tension. By comparing (62) and (67), we may see that exactly the same 
predictions are obtained from both approaches. 

5.  Dynamics of a drop in a steady electric field 
Earlier, in $3, we discussed the results for the dynamics of a drop in a steady electric 

field that were obtained by the perturbation analysis. In this section, we discuss the 
dynamical behaviour in a steady field that is predicted by the dynamical model 
equation (62). For steady electric field, W(t)  = W = constant, and the steady-state 
solution of the dynamical equation is obtained from 

1 1  $WE;,,,,, = 2a2---a3. 
a3 
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FIGURE 6. Comparison of Taylor’s solution with perturbation solution 
(solid line : Taylor’s solution ; dotted line : the first-order perturbation solution). 

The solution of (68) is identical to Taylor’s result and is given in figure 6, where the 
first-order perturbation solution is also given for comparison (see (9) for the 
perturbation solution). As shown in figure 6, there is a limiting value of W for the 
existence of a steady-state solution. The limiting value of W is termed the critical 
Weber number and denoted by W,. Thus, the steady-state solution has two branches 
of stable and unstable solutions. Taylor’s result has been verified by exact numerical 
solutions (Basaran & Scriven 1989; Miksis 1981). Basaran & Scriven used the finite- 
element method and Miksis used the boundary-integral technique to solve the 
problem. The numerical solutions showed that Taylor’s solution is surprisingly 
accurate (the error in the limiting value of Wis less than 1 YO and the error in the critical 
aspect ratio is less than 2 %). Furthermore, it was shown that Taylor’s solution is quite 
accurate even for the unstable branch unless the deformation is extremely large 
(accurate at least up to the aspect ratio a /b  = 3). On the other hand, as we can see in 
figure 6,  the first-order perturbation solution is accurate only up to W 

The good accuracy of the spheroidal steady solution even for cases of large 
deformation verifies that the dynamical equation (62) is adequate for the global 
analysis on the drop dynamics. Now let us see the full dynamics for a given W value. 
We first define 

Then, we have 

0.07. 

XI = a, x, = 1, = a. (69) 

(70 a) 1, = x2 = f+,, x,), 

= f i (X1,  x2). 

For an inviscid conducting drop ( S  = 0), the phase-plane portraits for the drop 
dynamics are shown in figure 7 for sub- and supercritical Weber numbers. As we may 
see, the domain in each phase-plane is decomposed into two parts, stable and unstable 
regions, by a separatrix when the Weber number is subcritical. Thus, a drop may break 
up even in the case of a subcritical Weber number if the initial condition is outside the 
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FIGURE 7. Dynamics of a conducting drop in a steady electric field. 

separatrix. This is obviously nonlinear dynamical behaviour. In fact, there is an 
interesting comment on this behaviour : Taylor (1964) explained the experimental data 
on the drop stability, which is about 7 YO lower than the predicted critical value of W, 
as follows: 'The discrepancy may well be due to the fact that Macky's drop suddenly 
entered the electric field, dropping into it from an unelectrified region, so that they were 
not in a static stage.' 
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As will be shown later, the existence of a separatrix has an important meaning for the 
dynamics of a drop in a time-dependent electric field. Here a comment must be made 
regarding the term ‘breakup’. In fact, the dynamical equation predicts indefinite 
extension (not real breakup) if the initial condition is outside the separatrix. However, 
an indefinitely extended drop is expected to be broken up (or disintegrated) at some 
stage due to the action of surface tension. Hereafter, the term ‘breakup’ should be 
understood in that context. 

Before going on to the dynamics in a time-periodic electric field, we study 
the linear stability of the steady-state solution for the system (70). If we define 
u( = xi -x is ,  i = 1,2 and u = (ul, u ~ ) ~ ,  where xis is the steady-state solution, for the 
linear stability analysis we have 

where J is a Jacobian matrix which is defined by Jij = aL/i3xil,,. From the eigenvalues 
of J, we may compute the frequency of oscillation and the damping factor as functions 
of W and S. The results are given in figures 2 and 3 in the earlier 93 for comparison 
with the results from the perturbation analysis. For the case of inviscid drop ( S  = 0), 
the same result was obtained earlier by Brazier-Smith et al., who used the linearized 
version of the dynamical equation. 

U = Ju, (71) 

6. Dynamics of a drop in a time-periodic electric field 
For the case of steady electric field at a subcritical Weber number with S = 0, the 

system (70) is a Hamiltonian system with a saddle point and a centre (or elliptic point) 
(see the phase-plane portrait in figure 7). Now, we are interested in the cases where the 
Weber number is given as a function of time as 

W(t) = w,(1 fBcoswt). (72) 

A dynamical system with time-periodic forcing can be best studied by a Poincark map. 
A PoincarC map is a phase-plane portrait for which the data are taken only at times 
that are multiples of the period of forcing, i.e. t = nT, n = 1,2,3,. . . . Thus the PoincarC 
map for an unperturbed Hamiltonian system is identical to the original phase-plane 
portrait. As is well known from the Kolmogorov-Arnold-Moser (KAM) theorem (see 
Guckenheimer & Holmes 1983), almost all of the closed curves in the unperturbed 
PoincarC map are preserved when B is small. This is especially the case near the elliptic 
point, so let us start our discussion with the regular orbital dynamics near this point. 

6.1. Regular dynamics near the centre 
In this section, we consider the dynamical behaviour of (70) near the elliptic point when 
the time-dependent Weber number is given as in (72). We first analyse the dynamics via 
classical perturbation techniques, and compare the results with numerically constructed 
PoincarC maps. For a time-periodic Weber number, (70) becomes 

il = x2,  (73 a) 

x2 = - 
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Although (73) is a system of ordinary differential equations, it is quite difficult to obtain 
some analytical results for the dynamical behaviour. Thus, we want to use a simplified 
version of (73). In order to do that we consider disturbance variables u1,u2 defined 
earlier in (71) and expand (73) up to O(u;), O(u, u,), O(ui) and to O(3.  Then 

til = u,, (74 4 
ti, = - W: U, - SDU, + Au; + B u ~  - SCU, U ,  f EFW, cos wt, (74b) 

where wo is the frequency of oscillation for an inviscid drop about the steady shape in 
a steady electric field, i.e. the frequency predicted by (71) when 8 = 0 and S = 0. Thus, 
wo = w o ( F )  and it is the frequency obtained by Brazier-Smith et al. In (74), the 
coefficients are defined as 

In the above, all coefficients are evaluated at the steady solution (xis, xzs) for C = 0. For 
convenience, we define u = ul,  zi = u,; then (74) may be expressed as 

ii + SDzi + W ;  u - Au' - Bzi' + SCUU = f Z((FW,) cos wt. (75) 
In (79, we consider two perturbation parts, kcos wt: there is only a phase difference 
of n: between cos wt and - cos wt, thus for convenience we confine our discussion to the 
case of coswt for the moment. 

In Kang & Leal (1990), a similar equation that does not include the U2 term has 
already been discussed in detail for the dynamics of a bubble in straining flows near the 
critical point. In fact, the term with Uz does not have significant effect on the dynamics 
near the critical point (i.e. W - W,), where W, refers here to the limiting value of Wfor 
the existence of steady solution (see figure 6). For that case, wi + 0 as W-t  W ,  because 
the frequency of oscillation should be zero at W = W,. (At the critical point W = W,, 
both eigenvalues of J in (71) are zero when S = 0.) But the ii term should be balanced 
by the w i  u term, and ii = O(wi) O(u) and zi = O(wo) O(u). Thus, lU21 < lu21 as W+ W,, 
which means that the term with z i 2  is negligible compared with other terms when 
W+ W,. However, in the present case, we do not limit our concern to the case of 
W+ W,. Instead, we consider the dynamics of a drop near the stable state up to the 
square terms for the whole Weber number region. 

6.1.1. Resonant case (o - wo) 

Now, let us consider the resonant case where the forcing frequency is near the 
intrinsic frequency of oscillation in a steady electric field, i.e. w - wo. For simplicity, we 
consider only the inviscid case (i.e. S = 0), and we define E = E(FWo). Then (75) 
becomes 

Let us first consider the dynamics in the perfect resonance case (i.e. w = wo). For this 
end, the two-timing method provides a powerful tool and the leading-order solution is 
found to be (see references such as Nafeh & Mook 1979) 

where 7 = 8 t ,  and R(T), 4(7) satisfy the set of equations 

~ ~ + w ~ u - A u ~ - B U '  = Ecoswt. (76) 

u(t) - &(7) cos (wt - 4(7)), (77) 
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FIGURE 8. Solutions of equation (86) for the case &, = 1 and w = 1. 

dR 1 
- =-sin$, d7 2w 

(78 b) 
dq5 (5A2 + 5ABw2+ 2B2w4) R3 cos q5 

R -  = +-. d7 1 2 w 3  2w 

One immediate conclusion that can be drawn from (77) is that an O(d) dynamical 
output is produced by the O(e) resonant forcing. As will be shown shortly, this 
behaviour is due to the quadratic terms in (76). In many problems concerning drop or 
bubble dynamics, the local nonlinear dynamics near the steady solution can be 
described by the same type of equation as (76). This fact provides a physical 
significance to the result (77). Whenever we want a large-amplitude oscillation for some 
reason, we can easily achieve the goal via the resonant forcing. 

Although the two-timing solution of (76) can be easily found, in view of the physical 
significance it is appropriate to show briefly how the O(&) output results from the O(E) 
forcing. We expect a bounded two-timing solution of (76) in the form 

u(t) = E P R ( 7 )  cos (wt- (b(7)) + €2%(2)(t, 7) + €3%(3)(t, 7) + . . . 
= s W ) ( t ,  7) + € 2 P U @ ) ( t ,  7) + € 3 % 4 ( 3 ) ( t ,  7) + . . ., (79) 

where 7 = k t .  Then the quadratic nonlinear terms do not produce the so-called secular 
terms at O(sZP) but they do at O ( E ~ ~ ) .  On the other hand, 

Thus ii produces a secular term at 0(Fp). In order to have a bounded solution for 
d3)( t ,7 ) ,  the secular terms produced must be combined with the O(c) forcing term to 
eliminate all secular terms. Hence 

3p=1,  p + q = 1  
and we have the scalings in (77). 
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Now let us consider the effect of forcing frequency near the resonant frequency. To 
do that we introduce the following scaling:? 

2 
w - w, = - f9a. (81) 

(82) 
Then (76) becomes 

ii + (w + u - Au' - Bzi2 = c cos ot. 

The equation (82)  has a two-timing solution which is again given as (77), but this time 
R(r) and $(r) should satisfy the following set of equations: 

dR 1 
- = -sin$, dr  20 

aR. d$ (5A2 + 5ABwa + 2B2w4) R3 cos $ 
R-  = +-- dr  12@3 2w 

Thus, the effect of forcing frequency change is shown in the leading-order solution 
through the parameter a in (83b). 

The fixed point of (83) is determined from the pair of equations 

- 2 ~ w R  = -COS$. (844 b) 
(5A2+ 5ABw2 + 2B2w4) R3 

6w2 
sin$ = 0, 

For convenience, we define R, as 

6w2 
R, = {5A2+5ABw2+2B2w4 

Then, since cos$ = f 1 at the fixed point (84b) becomes 

R3 --2awR = f 1, 
R: 

(85)  

where + is for $ = z and - for $ = 0. The cubic equation (86) has an interesting 
solution feature depending on the parameter a, as shown in figure 8. The upper and 
lower curves in figure 8 are for the + and - cases respectively. As we can see from (86) 
and figure 8 ,  if u < a, = (3/2$) (R,/w) only one solution (denoted by RT) on the upper 
curve exists. However, if a > u, three solutions exist; one (RT) on the upper curve, and 
the other two (RT, and R2,) on the lower curve. Thus, if a < a,, there is only one fixed 
point at (R,$)  = (R:,n). On the other hand, if a > a, there are three fixed points at 
(Rf ,  z), (R?,, 0), and (RT,, 0). Since Rf is a monotonic increasing function of a, we may 
conclude that the resonance effect becomes stronger as a increases. In other words, the 
resonance effect is stronger at a slightly lower forcing frequency than at the perfect 
resonance value (note that a is defined as w - w, = -$a). This point will be verified 
later by the numerical solution of the full dynamical system (73). Hereafter, we limit 
our discussion to the upper solution curve because it includes the point a = 0 and it 
corresponds to the strongest resonance. We drop also the subscript + of RT to have 
the simpler notation R*. Then the fixed point is at (R,$)  = (R*,lt) for the ~coswt  

t This scaling was suggested by one of the referees. The author acknowledges the suggestion. 
9-2 
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FIGURE 9. PoincarC maps for the exact resonant forcing when W, = 0.15 
(o = wo = 2.074, and 5 = +0.05). 

forcing. Since there is only a phase shift of 7c for the case of - e cos wt forcing, the fixed 
point is at (R*, 0) for the - ecos wt forcing. 

One more point to be mentioned is that the effect of Bzi2 term vanishes as w + 0, i.e., 
as W+ W, (see (84)). Therefore, as mentioned earlier in Kang & Leal (1990), the 
qualitative dynamical behaviour of a drop in a time-periodic electric field should be the 
same as that of a bubble in a time-periodic straining flow at least near the critical points 

One of the useful features of the two-timing solution is that it provides the PoincarC 
map directly. For example, the PoincarC map for (77) is simply obtained by substituting 
t = nTin (77), where Tis the period of forcing, i.e., T = 27c/w. In terms of the original 
variables, x1 and x,, the PoincarC map is given by 

( W -  K). 

x,(nT) = u(nT) +XI, - e h ( 7 , )  cos ((b(7,)) +XIS, 

x , ( n ~ )  = t i ( n ~ )  - & ~ R ( T , )  sin (#(T,)), 

where 7, = e:(nT). Therefore, we can easily see that the fixed points are shifted in the 
(xl, x,)-PoincarC map by (- dR*, 0) for ecos wt  forcing and (dR*, 0) for --ECOS w t  
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FIGURE 10. PoincarC maps for the cases of exact resonant forcing (o = 2.074) and nearly resonant 
forcing (o = 2)  when W, = 0.15 and E" = 0.05. 

forcing. Owing to the KAM theorem, there exist closed curves near the fixed point. 
Figure 9 shows two Poincark maps generated by numerical integration of the full 
dynamical system (73) for the resonant case w = wo = 2.074 when Wo = 0.15 and 
Z = f0.05 ( E  = +O.OSPW,>. As predicted above by the two-timing analysis, the fixed 
points are shifted to the left and to the right by &R*. One more point to be mentioned 
on the PoincarC maps is that the Poincart map for -0.05coswt corresponds to the 
PoincarC map for 0.05 cos w t  for which data are taken at t = (n + $) T. 

From the two-timing analysis, we have seen that the resonance effect increases as the 
forcing frequency decreases in the vicinity of the intrinsic frequency. Indeed, this 
behaviour has been verified by the numerically generated PoincarC map for the full 
dynamical equation. In figure 10, the Poincard map for a nearly resonant forcing 
(slightly lower forcing frequency (w = 2) than the intrinsic frequency of drop 
oscillation (w, = 2.074)) is compared with the PoincarC map for resonant forcing when 
Wo = 0.15 and 2 = 0.05. As we can see, the resonance effect is stronger at a frequency 
that is slightly lower than the intrinsic frequency wo. 
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6.1.2. n = 2 resonant case (w - 2w0) 
If the forcing frequency (w)  is far from wo, no particularly interesting results are 

expected near the centre, at least up to the leading-order solution. In fact, the leading- 
order solution is simply 

where R and 4 are constants that must be determined from the initial conditions. 
However, if we consider the next-order term, it is clear that there is again a multiple 
timescale response for the cases w - 20, and w - +w0. In particular, for these cases the 
nonlinear terms in (75) produce secular terms that must be suppressed in order to have 
bounded solutions at the second-order approximation. Since the w N 2w0 case exhibits 
interesting behaviour, we briefly consider it below. 

For convenience in analysis, we define 3 = +a and assume oo = 3 + €a, where a is an 
O(1) constant. Then (76) becomes 

ii + (I;) + €01)' u - Au' - Bzi2 = ECOS 26t. (88) 
In this case, (87) is modified for the case o - 2w0 to the form 

(89) 
E u N ~ R ( T ) C O S ( O ~ - ~ ( ~ ) ) - - C O S ~ I ; ) ~ ,  3 2  

where 7 = ~ t .  It can be shown that the functions R(7) and 4(7) satisfy the dynamical 
equations 

dR 
d7 

Rsin2$ = -,8Rsin2$, 

cos24+a = pcos24+a. 

As expected, (90) has a fixed point at R = 0, which can be either a saddle point or a 
centre in the (Rcos $, R sin $)-plane depending on the value of la//3I. If > 1, then 
4 is a monotonic function of 7, and (90) has an integral 

R2 = ~l/3~0~2q5+al ,  

where c is a positive number that depends on the initial condition. Therefore R = 0 is 
a centre. On the other hand, if Ia/PI < 1, then d4/d7 = Pcos24 +a = 0 has four 
solutions in 0 < $ < 27c. Along these lines d R / d ~  < 0 or d R / d ~  > 0, thus R = 0 is a 
saddle point. 

As in $6.1.1, the Poincare map for (88) near the centre can be predicted by (89) by 
substituting t = nT where T = 2n/o = n/3. Thus, the fixed point in the PoincarC map 
is either a centre or a saddle point depending on the parameter values. Indeed, the 
natures of the fixed point predicted by the two-timing analysis can be verified by the 
Poincare maps for the full dynamical equation. In figure 11, there are two PoincarC 
maps generated by numerical integration of (73) for Wo = 0.15 with the forcing 
frequencies of w = 2w0 = 4.148 (a = 0) and w = 2(wo-0.074) = 4(la//3I > 1). As 
expected, the fixed point for the a = 0 case is a saddle point while the fixed point for 
the Ia/PI > 1 case is a centre point in the (Rcos $, R sin $)-plane. 
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FIGURE 11.  Poincark maps for the exact n = 2 resonant forcing (w = 2w, = 4.148) and the nearly 
n = 2 resonant forcing (w = 4) when W, = 0.15 and E = 0.1. 

6.2. Chaotic drop dynamics and breakup 
Chaotic dynamics resulting from homoclinic orbit tangling for a perturbed two- 
dimensional map is well explained elsewhere (cf. Guckenheimer & Holmes 1983 or 
Wiggins 1988). As mentioned earlier, the drop dynamics in an electric field is very 
similar to the bubble dynamics in a straining flow, and the effect of time-periodic 
forcing on drop breakup may be similarly understood by the lobe dynamics in Kang 
& Leal (1990) (see also recent papers by Rom-Kedar & Wiggins 1990 and McRobie & 
Thompson 1991). So here we touch only on the condition for the chaotic dynamics to 
occur and the specific PoincarC maps for the drop dynamics in a time-periodic electric 
field. 

For the case of S = 0, the Poincart map of (73) always has a homoclinic tangle, but 
if S > 0 a homoclinic tangle (i.e. chaotic drop dynamics) is not always possible. In 
order to have a homoclinic tangle, the ratio of the amplitude of forcing to the damping 
coefficient S must exceed a certain critical value, which is a function of the forcing 
frequency. The condition for chaotic drop dynamics (or equivalently the existence of 
a homoclinic tangle) for E" << 1 can be obtained via the Melnikov function (cf. 
Guckenheimer & Holmes). The Melnikov function essentially provides a measure of 
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FIGURE 12. The condition for existence of homoclinic tangle for S > 0; W = 0.15. 

the separation between the stable and unstable manifolds in the phase plane. Hence, 
when the Melnikov function equals zero, the stable and unstable manifolds intersect. 
For the system (73), the Melnikov function can be computed by 

M(t,) = J= x, [ WCOS w(t + to) 
--m 

= 2 ~ , s i n w t , l  Ei ,  p o l e ( 2 ~ ;  xz) sin wt dt-- 3y1: 2xlx: dt 
2x;+ 1 2x; + 1 

30s = 2 W, sin wt, G, -y G,, 
E 

where G, and G, are functions of w and evaluated numerically. The condition for 
existence of a homoclinic tangle, obtained from the Melnikov function equal to zero, 
is 

In figure 12, IG,/G,I is plotted for W, = 0.15. For W, = 0.15, the intrinsic frequency of 
oscillation is w, = 2.074. Thus, IG,/G,I has a minimum value at the frequency of 
w - 0.5 w,, which means that for a given S value, chaotic drop dynamics may occur 
at the smallest value of lG2/Gll. 

As mentioned earlier, the dynamics of a drop in a time-periodic electric field may be 
best understood by the PoincarC maps. For that end, PoincarC maps are generated by 
numerical integration of the dynamical system (73) for various frequencies and 
amplitudes of time-periodic forcing. 

We have first studied the effect of forcing amplitude on the drop dynamics for a 
fixed, nearly resonant frequency (w = 2 when W, = 0.15 and w, = 2.074). As mentioned 
earlier in 56.1.2, the resonant effect is stronger when the forcing frequency is slightly 
lower than the resonant frequency predicted by the linear analysis. Thus, we have 
chosen the forcing frequency as w = 2  rather than the exact resonant frequency 
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FIGURE 13. The effect of forcing amplitude on the PoincarC maps in the nearly resonant case 
(w = 2 - wo and Wo = 0.15). 

w = wo = 2.074. The effect of forcing amplitude for the resonant case (w = 2 - w,) is 
shown in figure 13. As expected, the regular region shrinks in size as the forcing 
amplitude increases. (In each PoincarC map, the separatrix for the case of steady electric 
field ( W = W, = 0.15) is also shown for reference.) 

A conducting drop exhibits quite different behaviour depending on whether it is 
initially in the regular region or chaotic region. In figure 14, the effect of initial 
conditions on the drop dynamics for the resonant case (w = 2, E" = 0.05) is shown. As 
expected, a drop shows a two-timing behaviour when the initial condition is in the 
regular region (xl, = 1.01 and x2,, = 0). On the other hand, when we changed xl0 to 1.8, 
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FIGURE 14. The effect of initial conditions on the drop dynamics for the case of nearly resonant 
forcing (w = 2, E" = 0.05, and W, = 0.15). 

the drop oscillates chaotically for a while and finally breaks up. This chaotic breakup 
can be best understood by the lobe dynamics such as in Kang & Leal (1990) or 
McRobie & Thompson (1991). When we further increase xl0 to 2.0, we observe an 
earlier breakup as we can see in figure 14. As we have noticed above, a drop does not 
break up if it is initially in the regular region, otherwise it eventually breaks up. Thus, 
the size of the regular region can serve as a measure of drop breakup efficiency. From 
figure 13, we can observe that the breakup efficiency is significantly improved by 
resonant forcing. Particularly, it is noteworthy that considerable shrinkage of the 
regular region can be obtained by resonant forcing with small amplitude. 

As mentioned earlier, one of the most critical factors in drop dynamics is the forcing 
frequency. In figure 15, the effect of the forcing frequency on the Poincart maps is 
shown for the case of W, = 0.15, 8 = 0.1. As expected, the regular region has the 
minimum size when the forcing frequency is near the resonant value. The effect of the 
forcing frequency can also be shown by the plots of x, us. t shown in figure 16. For the 
same W, = 0.15,8 = 0.05, and x,, = 1.2, x20 = 0, the forcing frequency was varied. As 
we can see, the O(&) output was produced by the O(3 forcing when the forcing is near 
the resonant value, while only O(E) output was obtained for the non-resonant cases. 

Thus far, we have discussed the dynamics of an inviscid drop in a time-periodic 
electric field. Here, we want to show that a viscous drop can also be effectively broken 
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FIGURE 15. The effect of forcing frequency on the Poincar.5 maps when W, = 0.15 and Z = 0.1. 

up by resonant forcing. In our analysis, the viscous effect is represented by the 
dimensionless number S defined in 52. Before starting our discussion, let us first 
look at some typical values of S. If we assume ,u = 0.01 g cm-' s-', p = 1 g cmP3, 
and y = 70 dyne cm-' for an aqueous drop, then S = 1.2 x lop3 for a, = 1 cm, 
S = 1.2 x lo-' for a, = cm. Note that the 
value of S is small enough even for extremely small droplets of size 1 pm. Thus, we may 
safely assume that the weak viscous effect is valid for most cases. In order to see 
the resonant breakup phenomena of a weakly viscous drop, which is initially at rest 
(xlo = l.Ol), alternating electric fields are considered. In this case, the time-dependent 
Weber number may be described as W( t )  = W,( 1 + cos w,,, t ) ,  where w,,, is the intrinsic 
resonance frequency of a drop in a steady electric field of W = W,. As we have seen in 
53.1, the intrinsic frequency predicted by the theory based on the spheroidal approxi- 
mation agrees very well with the prediction by the asymptotic formula (37) when 
W d 0.12 and S = 0. Thus, this time the asymptotic formula (37) with S = 0 (which 
is the same as Feng's asymptotic formula) was used with n = 2 to produce 

= S-22.114W0. Resonant drop breakup phenomena are shown in figure 17 for S 
= 0, 0.01, and 0.1. For each S value, W, was adjusted to the nearly minimal value for 
which resonant breakup is possible. From figure 17, we can see the fact that the 
breakup efficiency can be significantly improved by applying a resonant electric field. 
When a steady electric field is applied, drop breakup is possible at the value of 

cm, and S = 1.2 x lo-' for a, = 
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FIGURE 16. The effect of forcing frequency on the drop dynamics when W, = 0.15. 

W>O.l88forS=O, W30.189forS=O.Ol,and W30.21 forS=0.1. (Forasteady 
electric field, a drop always breaks up if W 2 0.21. But, when S is very small, breakup 
can also be possible at smaller values due to the nonlinear effect. In particular, when 
S = 0, a drop breaks up in a steady field if its initial condition is outside the separatrix. 
For 0.188 < W < W,, the size of separatrix is small enough for (xl0, xao) = (1.01,O) to 
be outside the separatrix. See the phase-plane portraits in figure 7.) On the other hand, 
when the resonant alternating field is applied, breakup is possible at the average value 
of W, 3 0.01 for S = 0, W, 3 0.04 for S = 0.01, and W, 3 0.14 for S = 0.1. 

6.3 .  Discussion of the results 
In the present work, drop dynamics in a time-dependent electric field has been 
investigated via analyses of the dynamical equation derived with the spheroidal 
approximation. As mentioned earlier, the dynamical equation cannot represent the 
exact dynamical behaviour of a conducting drop in various time-dependent electric 
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FIGURE 17. Drop breakup by resonant alternating electric fields for the cases S = 0, 0.01 and 0.1. 

fields. However, as far as stretching and breakup of a drop are concerned, the 
dynamical equation is believed to represent the real dynamics quite well if we interpret 
exponential stretching as drop breakup. In the dynamical equation, we assume that a 
drop takes a prolate spheroidal shape even if the drop is extended indefinitely. 
However, in a real situation the drop will surely break up due to the action of surface 
tension. 

Since the validity of the dynamical equation depends significantly on the accuracy 
of its steady-state solutions, let us take a look at the steady-state solutions. As 
commented in Taylor (1964), the steady-state solution on the stable branch is very 
accurate. For unstable steady-state solutions, Miksis (198 1) and Basaran & Scriven 
(1989) showed that the unstable equilibrium shapes predicted by the spheroidal 
approximation agree quite well with the numerical results if I W -  W,l is not so large. We 
have also checked the relative normal stress imbalance ([i-i. TI- V - i ) / V . i i  at each 
point on the spheroidal surface. In figure 18, the relative normal stress imbalance is 
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FIGURE 18. Relative normal stress imbalance ([ti - d - T] - V - d)/V - li at the drop surface of the 
unstable steady-state solutions (dotted line : W = 0.15 ; solid line : W = 0.1). 

shown for the unstable steady-state solutions at W = 0.15 (dotted line) and W = 0.1 
(solid line). As we can see, the normal stress condition is satisfied within few percent 
error. Thus, we may say that the exact solution is not far from the spheroidal shape if 
W 2 0.1. Therefore we may assume that the dynamical equation can produce 
meaningful information on the drop dynamics in both qualitative and quantitative 
senses if W 2 0.1. Of course, the true unstable steady shape may be quite different from 
a spheroidal shape for very small Weber numbers. For those cases, the results in this 
paper must be understood only from the qualitative point of view. 

7. Concluding remarks 
In the present work, the nonlinear dynamical behaviour of a conducting drop in a 

time-periodic field has been studied. The most important result is the dynamical 
equation for drop deformation (equation (62)), which was derived in the form of a 
nonlinear ordinary differential equation based on the spheroidal approximation for the 
drop shape and the weak viscous effect. Although not exact and not capable of 
describing modes other than spheroidal deformation, the dynamical equation is 
believed to represent all possible dynamics of a drop in an arbitrary time-dependent 
electric field as long as the deformation is in the direction of the imposed field. 

Although capable of dealing with any kind of time-dependency of the electric field, 
the dynamical equation has been analysed for the special cases of time-periodic forcing 
by using two methods of analysis: classical two-timing analysis and PoincarC map 
analysis. The two-timing analysis on the dynamical equation revealed that in the 
neighbourhood of stable-state solution, an O(&) time-dependent change of shape can 
be obtained from an O(E) resonant forcing. The analysis also showed that the 
resonance effect is stronger at a forcing frequency that is slightly lower than the 
intrinsic frequency of exact resonance. The Poincar6 map analysis showed that the 
probability of drop breakup via chaotic oscillation can be maximized by choosing an 
optimal frequency for a fixed amplitude in time-periodic forcing. The optimal 
frequency was found to be the value that is slightly lower than the resonant frequency 
as predicted by the two-timing analysis. 
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The O(&) amplification by resonance and breakup via chaotic oscillation seem to 
represent two of the common characteristics in the problems of drop and bubble 
dynamics. This is especially the case when the steady-state solutions show the same 
critical phenomena as in this problem. Such examples include bubble dynamics in a 
straining flow (Kang & Leal 1990) and bubble oscillation in a time-periodic pressure 
field (Leal 1992). These common characteristics may be exploited in various 
applications. 

In view of the importance of the correct estimation of the intrinsic frequency of 
oscillation in a steady field, a brief perturbation analysis has also been performed to 
extend Feng’s (1990) asymptotic formula for the frequency modification by including 
the weak viscosity effect. Differently from other methods based on the theory of viscous 
dissipation, the viscous pressure correction and the viscous normal stress have been 
obtained directly by considering the perturbed velocity field due to weak viscosity. The 
analysis revealed the physics underlying the damping effect by showing that the viscous 
pressure correction and the viscous normal stress exert forces on the drop surface in the 
direction opposite to that of fluid motion. 

The author wishes to thank the referees for their valuable suggestions and 
comments. This work was supported by a grant from the Advanced Fluids Engineering 
Research Center at the Pohang Institute of Science and Technology. 
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